Question 1 - Bayesian Networks

Consider the Bayes Network below.

A) Write the joint distribution as the product of CPDs.
B) Which of the following statements are True, and which are False (in general). For each statement, write the word "True" or an Active Trail rejecting the statement.

	True/Active Trail		True/Active Trail
$Y_{0} \perp Y_{3} \mid Y_{1}$		$X_{1} \perp X_{3} \mid X_{2}, Y_{1,} Y_{3}$	
$Y_{0} \perp Y_{3} \mid Y_{1}, Y_{2}$		$X_{0} \perp X_{n} \mid X_{m^{\prime}} Y_{m}(0<m<n)$	
$X_{1} \perp X_{3} \mid X_{2}, Y_{2}$		$X_{0} \perp X_{n} \mid X_{m}^{\prime} Y_{m-1,} Y_{m}(1<m<n)$	
$X_{1} \perp X_{3} \mid X_{2}, Y_{2}, Y$		$X_{0} \perp X_{n} \mid X_{m}^{\prime} Y_{m-2,} Y_{m}(2<m<n)$	

C) Consider the following MRF. Write the joint distribution in the most general form (in terms of the potentials over cliques.)

Instructor:
B. Nasihatkon

D) Repeat part (B) for the Markov Network above.

	True/Active Trail	True/Active Trail	
$Y_{0} \perp Y_{3} \mid Y_{1}$		$X_{1} \perp X_{3} \mid X_{2}, Y_{1, ~} Y_{3}$	
$Y_{0} \perp Y_{3} \mid Y_{1}, Y_{2}$		$X_{0} \perp X_{n} \mid X_{m}, Y_{m}(0<m<n)$	
$X_{1} \perp X_{3} \mid X_{2}, Y_{2}$		$X_{0} \perp X_{n} \mid X_{m}, Y_{m-1,} Y_{m}(1<m<n)$	
$X_{1} \perp X_{3} \mid X_{2}, Y_{2}, Y_{3}$		$X_{0} \perp X_{n} \mid X_{m}, Y_{m-2,}^{Y} Y_{m}(2<m<n)$	

Question 2

Consider the following Bayes Net on binary variables
$A, B, C, D \in\{0,1\}$, with CPDs defined as:
$P(A)=3 / 4-A / 2$
$P(B \mid A)=(A B-B+1) /(A+1)$
$P(C \mid A)=(1-C A) /(2-A)$
$P(D \mid B, C)=(1-D+D B C) /(1+B C)$

A) Derive $P(D \mid A)$. Simplify your answer as much as you can.
B) Derive $P(D \mid A)$ for the following MRF on binary variables $A, B, C, D \in\{0,1\}$, and with the joint distribution below. Simplify as much as possible.

$P(A, B, C, D)=\frac{1}{Z} \exp (A B+1(B=D)+\min (A, C)+\max (C, D))$
C) Derive the partition function $Z(A, B)$ for the CRF below on binary variables $A, B, C, D \in\{0,1\}$.
$P(C, D \mid A, B)=\frac{1}{Z(A, B)} \exp (A B+1(B=D)+\min (A, C)+\max (C, D))$

